
Deep Evolution of Image Representations for

Handwritten Digit Recognition

Alexandros Agapitos, Michael O’Neill, Miguel Nicolau, David Fagan,

Ahmed Kattan, Anthony Brabazon, Kathleen Curran

Abstract—A training protocol for learning deep neural
networks, called greedy layer-wise training, is applied to the
evolution of a hierarchical, feed-forward Genetic Programming
based system for feature construction and object recognition.
Results on a popular handwritten digit recognition benchmark
clearly demonstrate that two layers of feature transformations
improves generalisation compared to a single layer. In addition,
we show that the proposed system outperforms several standard
Genetic Programming systems, which are based on hand-
designed features, and use different program representations
and fitness functions.

I. INTRODUCTION

Object recognition and image understanding are fun-
damental tasks of Artificial Intelligence. A great deal of
research is devoted to feature engineering for object recog-
nition systems, which is often a tedious process that requires
significant human involvement. Instances of state-of-the-art
hand-crafted feature descriptors that appear in the literature
are gradient-based operators such as Scale-invariant Feature
Transforms, affine-invariant patches and Histogram of Ori-
ented Gradients, Geometric Blur, as well as features inspired
by neuroscience like the V1-based model (for a description
of these and their reference see Section 1.1 in [1]). In order to
expand the applicability of Machine Learning (ML) to feature
extraction tasks, much recent work has focussed on making
object recognition systems less dependent on human-based
feature construction. The aim is to design systems so that
good feature representations can be automatically learned to
support effective induction of a classifier. The fundamental
question that is addressed here is: given an image, how
should we compute its representation?

Many recent object recognition systems use a cascade of
two basic modules responsible for feature construction [1]
followed by a classifier induction algorithm, generally a
multinomial logistic regression. These modules are: (1) a
2D-based transformation of patches of raw pixel intensity
values into a 2D feature map, and (2) a pooling operation
(i.e. down-sampling) that combines spatially nearby values
of the feature map, for example through a max or average
operator. The simpler implementations employ a single layer
of feature detection, however, systems based on multiple
layers of feature detectors are currently setting the winning
records in object recognition competitions [2].

Alexandros Agapitos, Michael O’Neill, Miguel Nicolau, David Fagan,
Anthony Brabazon, and Kathleen Curran are with the Complex and
Adaptive Systems Laboratory, University College Dublin, Ireland. (email:
alexandros.agapitos@ucd.ie). Ahmed Kattan is with the Computer Science
Department, Um Al-Qura University, Saudi Arabia.

With the advent of deep learning [3], schemes for stack-
ing layers of feature detectors with the aim of building “deep”
feature representations have been proposed. The dominant
method for training deep feature construction systems is the
so-called greedy layer-wise training [4]. In this method, a
hierarchy of features is learned one layer at a time: learning a
new transformation at layer l that takes as input a previously
learned transformation at layer l−1. After the end of greedy
layer-wise training, the resulting features of the last layer
can be used to train a classifier in supervised mode. It is
empirically demonstrated that layer-wise stacking of feature
detectors often yields a representation that is more efficiently
classified as opposed to its single-layer counterpart [5].

The layer-wise learning of features can be performed with
either unsupervised, or semi-supervised or supervised learn-
ing [3]. Greedy layer-wise supervised training (GLST) was
first introduced to learn deep feed-forward neural networks
in [6]. The main idea is to train the layers of the network
one at a time, so that we first train a network with one
hidden layer, and only after that is done, train a network
with two hidden layers, and so on. At each step, we take the
old network with k− 1 hidden layers, and add an additional
kth hidden layer (that takes as input the previous hidden
layer k− 1 that we had just trained). Training is supervised,
with classification error as the objective function at each step.
The generalisation performance of the proposed system was
superior to the system having the same number of hidden
layers that were jointly trained. Another variant of GLST
is presented in the work of [7], where the outputs of the
previous layer were fed as extra inputs, in addition to the raw
input, for the next layer. Moreover, a successful application
of GLST to conversational speech transcription is reported
in [8].

Genetic Programming (GP) has been successfully applied
to object recognition tasks (see [9] for a surveying table in
page 5). Most systems evolve classification programs that se-
lect and non-linearly combine features from a predefined bag
of features that are hand-crafted. More importantly, all of the
GP systems to-date use a single stage of classifier evolution.
Finally, multi-class object recognition usually requires either
the evolution of multiple one-vs-the-rest binary classifiers or,
in case where a standalone classifier is used, some sort of
effective classification strategy in order to map its output
into different class labels. Multinomial logistic regression is
a very successful multi-class classification algorithm that has
not been combined with GP to-date.

The paper proposes a novel way to evolve with GP a
hierarchical feature construction and classification system
with feedforward processing. The layered architecture of the978-1-4799-7492-4/15/$31.00 c©2015 IEEE

2452

system stacks one or two feature construction stages, each
of which consists of a layer that transforms a number of
input image representations into a collection of feature maps,
and a pooling layer that combines the values over local
neighbourhoods of a feature map using an average operation.
The final layer of the architecture is a regularised logistic
regression classifier.

To our knowledge, this is the first ever work that ad-
dresses the method of greedy layer-wise supervised training
as a form of deep learning with GP. For an initial step towards
deep GP systems for object recognition, we are addressing
the following research questions:

1) Is GP able to evolve image-feature representations
from low-level image data (i.e. pixel intensity val-
ues), which perform better in object recognition
tasks than basic hand-designed features based on
statistical moments?

2) What is the effect of greedy layer-wise supervised
training? Is there any advantage of using a deep
feature representation, that is a system architecture
with two successive stages of feature construction,
rather than an architecture with a single-stage?

The rest of the paper is organised as follows. Section II
presents a brief overview of object recognition in GP. Sec-
tion III describes the proposed method. Section IV outlines
the experiment setup. Section V presents the experimental
results, while Section VI concludes and proposes future
work.

II. OBJECT RECOGNITION WITH GP

Object recognition is an area that has received some
attention from the GP community. The purpose of this section
is twofold: it first discusses GP systems in terms of feature
construction; it then briefly reviews that main program archi-
tectures that have been used for object recognition to-date.

A. Feature construction

We identify two major classes of studies: (1) studies
that evolve symbolic expressions composed of predefined
features; (2) studies where the evolved symbolic expressions
are composed of raw pixel-based input.

The first category of studies use GP terminal sets
that contain predefined domain-independent features and/or
domain-specific features. This involves pre-processing image
data with low-level feature extraction algorithms. The works
of [9], [10], [11], [12], to name some of the most recent
ones, fall in this category.

The second category concerns the evolution of object
classifiers that use raw pixel intensity values as input. The
majority of function sets use operations that are statistical
moments parameterised with (a) position coordinates and (b)
size of an image patch that is used as input to the operation.
Evolution allows for these parameters to be optimised as
classifier programs are getting fitter. The works of [13], [14]
fall in this category. In addition, there have been systems that
use terminal sets containing as many variables as the number
of pixels in an image patch of fixed size; for a recent example
see [15].

B. Object recognition system architectures

The dominant program architecture in evolving object
classifiers with GP is a standalone expression-tree that is re-
sponsible for simultaneous feature construction and classifi-
cation. Arithmetic and other operations are used to transform
terminals representing extracted features or pixel intensity
values to a real-valued output at the root of the expression-
tree, which is further mapped to a classification label. Two of
the most recent systems based on an architecture that allows
for simultaneous feature construction and classification are
reported in [13], [14]. Both systems successfully evolved
standalone classifiers from raw pixel-based input using the
classification accuracy as the fitness function.

The work of [10] was one of the first to propose an
architecture in which a feature extraction program is inde-
pendently evolved from the classification program. In order
to first train the feature extraction stage, the human identifies
regions of “feature” and “non-feature” using a graphical user
interface. A program is then evolved to detect such features.
The evolution of a classifier that uses the “pre-trained”
feature detectors is based on the boosting methodology, in
which partial solutions are trained on different distribution
of training examples and are gradually added to the overall
classifier.

A modular feed-forward architecture is reported in the
work of [15]. It is defined by cascading a transformation
layer, a pooling layer and a classification layer. A moving-
window-based extraction of image patches is combined with
an evolved transformation to convert an original image into
a transformed image. The transformed image is then down-
sampled using several statistical moments, and the resultant
vectorised representation of the transformed image is used
as input to a Nearest-Neighbour classifier or a Decision-
tree classifier. The system is required to evolve an image
representation from raw pixel-based input that is effectively
classified using a very simple classification algorithm.

The vast majority of existing systems evolve standalone
programs that simultaneously perform feature extraction and
classification in a single evolutionary run. In addition, most
problems tackled are binary classification problems that
require the output of the program to be mapped to a class
label by setting the value of zero as the discriminating
threshold between classes. Evolving multi-class classifiers
in often difficult with standalone programs; addressing the
problem via the evolution of a collection of one-vs-the-
rest classifiers often improves classification performance.
How can we make GP classifiers scale-up to hundreds or
even thousands of classes? See for example the ImageNet
dataset with 1000 classes (http://www.image-net.org/) or the
Caltech-101 dataset with 101 classes (http://www.vision.
caltech.edu/Image Datasets/Caltech101/).

III. DEEP EVOLUTION OF FEATURE REPRESENTATIONS

The architecture of the system, which is inspired by [1],
is a stack of layers defined in a bottom-up fashion as follows:

1) Filter bank layer.
2) Transformation layer.
3) Average pooling (i.e. down-sampling) layer.

2453

4) Classification layer.

A. Filter bank layer

A filter bank is a collection of filters, which are repre-
sented as 2D arrays of values (i.e. weights) that are used
as kernels in 2D discrete convolution operations [1]. There
exist various choices for the filters composing the bank in
this layer (for a description see Section 1.1 in [1]). These can
either be predefined or randomly initialised and subsequently
learned. In this initial implementation the values of the 2D
arrays are initialised to random values and they are kept
fixed (no evolution takes place on these parameters). The
justification of this choice is twofold.

First and foremost, it has been shown [1], [16] that con-
volutional pooling architectures enable even random-value
filters to perform competitively against systems where the
filter banks are learned in an unsupervised or supervised way.
The authors in [1], [16] conclude that while filter fine-tuning
is essential to achieve state-of-the-art performance, the major
contribution to a system’s performance can be attributed to
the choice of its architecture in terms of different ways for
cascading modules of transformation and pooling.

Second, as an initial step, we are interested in studying
only the evolution of the transformation layer. This is some-
what of a more controlled experiment with a more limited
search space as opposed to a system that allows for the
evolution of both the filter bank and transformation layers.

The filter bank is a collection of K filters (also known
as kernels) {k1, . . . , kK}, where filter ki ∈ R

w×w with w
referred to as the receptive field size. The input to the filter
bank layer is an image Img ∈ R

n×n, represented as a
n × n matrix of pixel intensity values. The output is a 3D
representation (n−w+1)×(n−w+1)×K (with K filters).
Each (n−w+1)×(n−w+1) feature map fmi is generated
using a 2D discrete convolution operation (ki∗Img) between
the filter ki and the image. The convolution operation moves
the w × w filter across the image with a step-size of one
pixel. Figure 1 illustrates a sample generation of a feature
map through the 2D discrete convolution operation 1. In the
following abbreviation, the superscript denotes the receptive
field size of the filters, while the subscript denotes the number

of filters in the filter bank. For example F
(5×5)
(10) denotes a

filter bank layer with 10 filters of dimensionality 5× 5. The
output from this layer is 10 feature maps.

B. Transformation layer

The transformation layer receives an array of m feature
maps, that is a d × d × m representation, where d × d is
the dimensionality of each feature map. The transformation
process extracts patches from this 3D representation using
a moving-window-based approach of step-size of one pixel.
Each patch has dimension w × w × m with w referred to
as the receptive field size and m as the number of input
feature maps. A patch p ∈ R

w×w×m is transformed into
y ∈ R via an evolved program f : R

w×w×m �→ R. The

1Figure 1 is taken from https://developer.apple.com/library/ios/
documentation/Performance/Conceptual/vImage/ConvolutionOperations/
ConvolutionOperations.html. Last accessed in 14/01/2015.

Fig. 1. Sample generation of a 5 × 5 feature map as the result of the
2D discrete convolution of a 7 × 7 input image with a 3 × 3 filter. The
center element of the filter is placed over the source pixel. The value of the
destination pixel in the feature map is then calculated as (4×0)+(0×0)+
(0×0)+(0×0)+(0×1)+(0×1)+(0×0)+(0×1)+(−4×2). The
complete feature map is generated by placing the center of filter over all
possible source pixels in the input image with the step-size of one pixel. The
surrounding border pixels shown in the feature map are ultimately discarded
resulting in 5× 5 representation.

program output y is then passed through the hyperbolic
tangent function before it is assigned as the intensity value
of the destination pixel in the transformed feature map. By
sliding a moving window with a step-size of one, the entire
input representation of d × d × m is transformed into a
(d−w+1)× (d−w+1) representation. Figure 4 illustrates
an example. The abbreviation T (3×3) denotes, for example,
a transformation layer with a receptive field size of 3× 3.

C. Average pooling layer

This layer is used to reduce the dimensionality of the
representation via down-sampling. An m × m feature map
down-sampled with a d× d pooling window will result in a
(m/d) × (m/d) feature map. Each output value is yijk =∑

pq wpq · xi,j+p,k+q , where wpq is a uniform weighting
window. An example of average pooling is illustrated in
Figure 2. An average pooling layer with a 4 × 4 down-
sampling is abbreviated to P (4×4).

D. Classification layer

The classification layer receives a s×s×m representation,
where s × s is the dimensionality of a feature map and m
the number of input feature maps. Either a single evolved
program may used to generate the input, in which case
m = 1, or multiple evolved programs may be used, in which
case m > 1. The vectorised representation of each feature
map is first generated, that is a vector in R

N , where N = s·s.
Given m such vectors, a total of m ·N features are used for
classification. We employ a regularised multinomial logistic
regression classifier, which is trained with a cross-entropy
loss function using a Quasi-Newton optimisation method.
The ridge parameter λ is set to the value of 0.001 and the
number of iterations to 1000. An example classification layer
that aggregates features from 3 feature maps is abbreviated
to C(3).

E. Greedy layer-wise supervised training

Different object recognition systems can be assembled
by cascading the above-mentioned layers in different ways,

2454

Fig. 2. Example of average pooling of a 4 × 4 feature map with a
2 × 2 pooling window. The pooling window is positioned on all possible
non-overlapping areas of the feature map, computing the average of pixel
intensity values from the extracted patches. The resultant representation is
a 2× 2 feature map.

Fig. 3. Set of hand-made features. 74 feature areas where identified and
the mean and std. deviation of each calculated, resulting in 148 features.
The first set of features consist of subdividing the image into 16 non-
overlapping squares of size 7x7 pixels. An example of this type of feature is
highlighted above in the square F G L K. The second set of features contains
9 overlapping squares 14x14 pixels in size, seen above in the highlighted
square B D O L. Finally the image is divided into 49 non-overlapping
squares of size 4x4 pixels. This type of feature is highlighted in the square
A 1 8 7 above.

Fig. 4. Example of a T (3×3) transformation layer that transforms a 10×
10× 2 representation into a 8× 8 representation. The input to the evolved
program is a 3D array of pixel intensity values representing the two extracted
3×3 patches. The sample program adds the maximum value from the second
matrix to the value in position (0, 2) from the first matrix. See later section
for description of primitive elements used by evolved programs.

Fig. 5. Sample images from MNIST dataset.

similarly to Convolutional Neural Networks [2]. For example,
F → T → P → C is a basic feed-forward object recognition
system that uses a filter bank layer, followed by a transfor-
mation layer, an average down-sampling layer and finally a
classification layer.

This section describes the training protocol considered for
learning deep feature representations with GP. The algorithm,
which is based on [6], is supervised, greedy, and layer-wise.
The general approach is to train each new layer of image
transformation in an independent training run, taking each
time as input the output of the last of previously trained
transformations. Every successive transformation layer serves
as pre-training initialisation of a newly-invoked training
procedure with the aim to learn a stack of gradually better
representations.

During the first stage of evolution, we evolve the first
transformation layer TStageA using the architecture of F →
TStageA → P → C(1). A placeholder in TStageA allows to
test different programs in terms of their ability to generate
effective image representations (i.e. feature maps). The wrap-
per approach to feature map evolution is taken, in which the
logistic regression classifier C is wrapped around the feature
map produced by a candidate program, with the classification
error rate accruing from the classifier assigned as the fitness
of the candidate feature map. At the end of the evolutionary
run a number K of best-evolved feature maps (i.e. maps that
were generated from K best programs) of dimensionality
d×d are aggregated in a K×d×d representation abbreviated
to TStageA,K .

In the second stage of evolution, a second transformation
layer TStageB is evolved using as input the output of the
first evolutionary run, that is a K × d× d representation of
best-evolved feature maps. A new, independent evolutionary
run is invoked using the system architecture TStageA,K →
TStageB → P → C(1). Note that the layer F used in the
first stage is now replaced by TStageA,K . The rest of the
procedure for evolving TStageB remains the same as above.

IV. EXPERIMENT SETUP

A. MNIST dataset

We tackle the popular MNIST benchmark, which is a
hand-written digit classification dataset (10 classes between
0, . . . , 9). Digits are represented using 28 × 28 grey-level
images. The dataset contains 60, 000 training examples and
10, 000 test examples, and it is publicly available from

2455

http://yann.lecun.com/exdb/mnist/. In the current work we
use the complete test set, but only train on the first 30, 000
training examples. This was chosen in order to reduce the
memory requirements for this initial study. A sample of
training images is given in Figure 5.

B. Systems under comparison

We are experimenting with four different systems for
evolving hand-written digit classifiers, specified as follows:

1) Single-stage transformation system (SST). Its archi-

tecture is defined as F
(5×5)
50 → T (5×5) → P (4×4) → C(1).

The first layer is composed of a filter bank of 50 filters with
5×5 receptive fields, resulting in a 24×24×50 representa-
tion. 10 filters were generated from each of U(−1.0, 1.0),
U(−5.0, 5.0), UD(1, 5), N(1.0), N(5.0), where U(x, y)
denotes uniform sampling of real-valued numbers within the
[x, y] interval, UD(x, y) denotes uniform sampling of dis-
crete numbers in [x, y] interval, and N(x) denotes sampling
from a Normal distribution with a standard deviation set to
x. The same filters are used in all independent evolutionary
runs. The transformation layer uses a 5 × 5 receptive field,
which further reduces the resolution of the representation
to 20 × 20. The down-sampling layer uses an average
pooling of 4 × 4, which produces a final output feature
map of size 5 × 5. Based on a single program (i.e. C(1)),
this generates 25 features that are then fed to the logistic
regression classifier that produces a vector of 10 outputs
representing the probability distribution over class labels (i.e.
{0, . . . , 9}). The classification error rate is used as fitness
function for evolving the transformation layer. This is defined
as 1.0 − correct

N , where correct is the number of examples
that are correctly classified and N is the total number of
examples in the training set.

2) Double-stage transformation system (DST). The
second stage feature construction system is fed with the
output of the first stage, denoted as TStageA,50. The subscript
50 denotes that the second stage uses the best 50 evolved
feature maps from the first stage. The overall architecture
is defined as TStageA,50 → T (5×5) → P (4×4) → C(1).
The transformation layer uses a 5 × 5 receptive field size
operating on 20 × 20 feature maps, which further reduces
the resolution of the representation to 16 × 16. The down-
sampling layer uses an average pooling of 4 × 4, which
produces a final output feature map of size 4 × 4, totalling
16 distinct features for logistic regression classification based
on a single program. The classification error rate is used as
the fitness function.

3) A standard GP system that evolves programs with real-
valued output (STGP), which is mapped to a class label via a
classification map [11]. This method positions class regions
sequentially on the floating point line. An input is classified
to the class of the region that program-output falls into. We
defined the following map using the identical interval of
1.0 between class labels: 0 ∈ (−∞, 1.0), 1 ∈ [1.0, 2.0),
2 ∈ [2.0, 3.0), 3 ∈ [3.0, 4.0), 4 ∈ [4.0, 5.0), 5 ∈ [5.0, 6.0),
6 ∈ [6.0, 7.0), 7 ∈ [7.0, 8.0), 8 ∈ [8.0, 9.0), 9 ∈ [9,+∞).
Using this program representation we experiment with three
different fitness functions: (i) STGPmse. The first fitness
function takes the form of mean squared error between

program output pi and desired output yi for the ith training
example. Given a set of N examples, this is formally defined

as 1
N

∑N
i=1(pi − yi)

2, where yi = classlabeli + 0.5 with
classlabel ∈ {0, . . . , 9}. (ii) STGPmse/ls. The second
fitness function is based on the first one, but performs a
linear bias correction of pi (known as linear scaling in the
GP literature) prior to calculating its squared deviation from
yi. The slope b and intercept a are calculated so as to
minimise the squared error between yi and a + bpi. That

is, b = 1
N

∑N
i=1[(pi − p′)(yi − y′)]/

∑N
i=1(pi − p′)2, where

p′, y′ denote the average program output and average target
value respectively. The means squared error is defined as
1
N

∑N
i=1(a + bpi − yi)

2. (iii) STGPer. The third fitness
function takes the program output and directly maps it to
a class label using the classification map specified above.
The classification error rate is used as fitness function.

4) A GP system that evolves programs taking the form
of decision-trees (GPDT). A decision-tree is a hierarchical
structure composed of nested if-then-else constructs,
each taking 3 arguments. The first argument is a predi-
cate expression that is evaluated to either true or false.
The second and third arguments are either class labels or
if-then-else constructs. If the result of the predicate’s
evaluation is true then the second argument is returned;
else, the third argument is returned. The fitness function
used for evolving decision-trees is the classification error rate
described above.

C. GP systems setup

Tables I and II summarise the functions and terminals
respectively. The arithmetic functions of division, logarithm
and square root are protected. Both SST and DST sys-
tems use the same functions and terminal elements. The
function set contains arithmetic and image-based functions.
Min, Max, Mean, StdDeviation, Entropy, each re-
ceives five arguments. The first argument represents an
ImagePatch. The second, third, fourth, and fifth ar-
guments represent XUpperLeft, YUpperLeft, XLowerRight,
YLowerRight Coordinate values respectively. These func-
tions return the respective statistical operation applied to
the rectangle in the ImagePatch that the four parameters
specify. The smaller of the two X values is interpreted as
XUpperLeft and the larger is interpreted as XLowerRight.
The same is done for the Y values, thus the four parameters
always specify a legal rectangle in the ImagePatch. The
Coordinate terminals are not allowed to go beyond the
ImagePatch boundaries, so given receptive fields of size
5 × 5 used in the transformation layers, Coordinate
values are generated within the range {0, 4}. Finally, the
Intensity function returns the intensity value of a pixel
in an ImagePatch. Its second and third arguments specify
X,Y Coordinate values respectively.

The STGP system uses arithmetic functions, while
GPDT uses both arithmetic and decision-tree functions. 148
ImageFeature terminals are used in STGP and GPDT
systems. These are the means and std. deviations of certain
regions in the 28 × 28 example images. The way in which
the regions are defined is illustrated in Figure 3. In addition,
RandDouble terminals are used by STGP, while GPDT
uses both RandDouble and ClassLabel terminals.

2456

TABLE I. STRONGLY-TYPED FUNCTIONS

Function Argument(s) type Return type
Arithmetic
+, −, ∗, / double, double double
ex, log(x), sqrt(x), sin(x), tanh(x) double double

Image-based
Min, Max, Mean, StdDev, Entropy image, integer, integer double

integer, integer
Intensity image, integer, integer double

Decision-tree
If-Then-Else boolean, integer, integer

integer
and, or, xor boolean, boolean boolean
not boolean boolean
<, ≤, >, ≥ double, double boolean

TABLE II. STRONGLY-TYPED TERMINALS

Terminal Type Description
RandDouble double randomly generated double in [-1.0, 1.0] interval
ImageFeature double means and std. deviations of certain regions (Figure 3)
ImagePatch image 2D array height × width of pixel intensity values
Coordinate integer x ∈ [0, width − 1] or y ∈ [0, height − 1]
ClassLabel integer class label in {0, . . . , 9}

SST uses a population size of 500 evolved for 100
generations. DST takes as input the 50 best feature maps
evolved by generation 50 of SST and evolves them for an
extra 50 generations, thus the computational effort of the two
systems is the same. Both systems use tournament selection,
with a tournament size of 4. On the other hand, STGP
and GPDT systems use 1, 000 individuals evolved for 100
generations. The population size was deliberately set higher
after obtaining very poor preliminary runs with a population
of 500 individuals. Tournament size is set to 7.

All four systems were initialised with the ramped-half-
and-half method with depths between 2 and 6. The maxi-
mum allowed depth during evolution was set to 12. Subtree
crossover (90% inner nodes, 10% leaf nodes), subtree muta-
tion (max. depth of random tree set to 4), and point-mutation
(prob. of a node to be mutated set to 1.0/TreeSize) were
applied with probabilities of 30%, 40% and 30% respectively.
Elitism of 1% of population size was used.

D. Dynamic sampling of training examples

We used a variant of Dynamic Subset Selection, which
is a hybrid between Random-per-Generation (RPG) and
Random-per-Individual (RPI) methods. A random sample Rg

of size 3, 000 for generation g is made up of two samples
RPGg and RPIgj . RPGg is a random sample that is used
by all members of the population, while RPIgj is a random
sample independently drawn for individual j.

The algorithm for RPG involves randomly selecting a
target number S = 2, 500 of examples from the complete
training set of N = 30, 000 examples per generation, with a
bias, so that an example is more likely to be selected based
on its difficulty. Each training example i is assigned a weight
wi = (1.0 + m

n)d, where m is the number of individuals
misclassified the example, n is the number of individuals
that tackled the example at a particular generation, and d
is the exponent of the polynomial weighting scheme set to
the value of 9 in our experiments. At the first generation

both m and n are set to the value of zero. The probability
that a training example i will be selected at generation g is

given by Pig =
wig·S∑N
z=1 wzg

. We iterate through the training set

∀i : 1 ≤ i ≤ N , picking at each iteration a random number r
in the range of [0.0, 1.0], and selecting example i if Pig > r.
The selected sample size fluctuates around the target size S,
while the inclusion of S in the calculation of Pig ensures
that the expected selected subset size is of target size. If an
example is selected to be included in the subset, the values
of m and n are initialised to zero.

Once the first random sample of size T has been gener-
ated using the RPG method, a number of T ′ = 3, 000− T
examples are randomly picked independently for each indi-
vidual. RPI uses a uniform sampling among 30, 000 training
examples. The process ensures that the RPG and RPI
samples form disjoint sets.

V. RESULTS

We performed 30 independent evolutionary runs for each
system on Section IV-B. Training is based on dynamic
samples drawn from the complete set of 30, 000 examples
as described above. Generalisation performance in assessed
via the classification error rate on the complete test set of
10, 000 examples that is provided in the MNIST distribution.
For the sake of brevity we will refer to it simply as error rate
in the remaining of this section.

Figures 6(a),(b)(c) show the evolution of error rate for
STGPmse, STGPmse/ls, and STGPer respectively. Results
suggest that STGPer outperforms the rest of the systems,
attaining a median error rate of 0.63 at generation 100 as
opposed to the median values of 0.78 for STGPmse/ls and
0.82 for STGPmse. We can conclude that the fitness function
based on the training classification error rate is the most
appropriate when evolving classifiers in the form real-valued-
output expression-trees, which require a classification map
for mapping program-outputs to class labels. Furthermore,
linear scaling (Figure 6(b)) offers improvements over MSE
alone (Figure 6(a)).

In the case of GPDT (Figure 6(d)), the median error rate
of 0.48 by generation 100 outperforms all STGP systems.
This means that 52% of test cases are correctly classified.
It seems that the decision-tree representation results in a
more evolvable system for the case of this multi-category
classification task. In fact, there is a lack of studies in
the literature that deal with many classes, and the issue
of classifier representation and scalability to such problems
surely warrants further investigation. A final observation that
is consistent in all four standard GP systems is that there is no
overfitting; the error curves take the form of monotonically
decreasing functions of the generation number. It is therefore
interesting to study longer evolutionary runs in the future.

Figure 6(e) shows the evolution of error rate for the
case of SST using a single best-evolved program to generate
features in the classification layer. Median error rate reaches a
minimum of 0.076 by generation 50, at which point evolution
seems to stagnate and slight overfitting is evident thereafter.
At generation 100 the median error rate of SST reached
the value of 0.077. Figure 6(f) shows the evolution of error

2457

rate for the case of DST, using the best-evolved program. By
generation 30, a median error rate of 0.070 is obtained, while
by generation 40 the median error rate is 0.069. Overfitting
is observed after generation 40, and by generation 50 the
median error rate has the value of 0.071.

We performed a Wilcoxon rank sum test to test the null
hypothesis that error rate data of SST and DST are samples
from continuous distributions with equal medians, against the
alternative that they are not. The significance level is set to
0.05. The p-value for SST/Gen50 vs. DST/Gen30 is 0.0011
with DST outperforming SST. The p-value of SST/Gen50
and DST/Gen40 is 0.0007 with DST outperforming SST.
Finally, the p-value for SST/Gen100 vs. DST/Gen50 is
0.00002 with the latter outperforming the former.

Having evolved a population of programs generating the
transformed feature maps, we were tempted to use more than
the single best-evolved program to generate features in the
classification layer. We decided to use the 5 best-evolved or
10 best-evolved programs from each population. In the case
of 5 programs, this led to 25 · 5 = 125 features in SST, and
in 16 · 5 = 80 features in DST. Additionally, in the case of
10 programs, this led to 25 · 10 = 250 features in SST, and
in 16 · 10 = 160 features in DST.

The results for 5 best programs are illustrated in Fig-
ure 6(g). Contrasting between Figures 6(e) and 6(g), we
observe that the error rate is significantly improved from a
median of 0.076 to the value of 0.046 in SST/Gen50. In the
case of DST/Gen30 the error rate is improved from a median
value of 0.070 to the value of 0.045. However the differences
in median values between SST/Gen50 and DST/Gen30 are
not statistically significant in Figure 6. Why multi-program
features didn’t benefit from two stages of transformation?
The observation that only the single best-program evolution
significantly benefited from DST can be attributed to the
fact that the fitness function was rewarding the evolution of
classifiers that were exclusively using either 25 features in
SST or 16 features in DST. We believe that the evolution
of sets of multiple programs can benefit from a two stage
transformation only in case where the system is deliberately
evolved towards that goal; this means that fitness is based
on the performance of a logistic regression classifier that
explicitly use a bigger number of features.

In summary, using 5 best-evolved programs can be ben-
eficial to the generalisation performance as opposed to a
single best program. But using 10 best programs (Figure 6
worsens generalisation compared to 5 best programs. The
aggregation of several features extracted from different best-
evolved programs is currently naive, given that we explicitly
evolved towards classifiers with either 25 or 16 features.
This is main reason of overfitting that was observed in 10
best programs as opposed to 5 best programs. Nevertheless,
why did 5 best programs performed better that the single
best program? It seems that they benefited from the dynamic
sampling of a portion of training examples independent for
each individual, which allowed for some sort of semantic
diversity to be maintained in the population. The logistic
regression classifier was able to leverage on these diverse
features, and a more powerful model was obtained.

Finally, Figure 6(i) shows the error rate of SST/Gen50 vs.

the error rate of DST/Gen30 in 30 independent evolutionary
runs for different number of best-evolved programs used for
classification. In the case of single best-evolved programs,
two layers of transformation is critical in improving perfor-
mance. In the case of 5 or 10 best programs, the results are
mixed.

VI. CONCLUSION AND FUTURE WORK

This paper was motivated by the latest research in de-
veloping efficient learning algorithms for deep architectures
of feature construction systems, since these has been proven
to be much more representationally expressive than shallow
ones. In this work we demonstrated the successful application
of greedy layer-wise supervised training of a deep, feed-
forward GP-based system for handwritten digit recognition.
The proposed system, operating on raw pixel-based input,
outperformed several standard GP system setups with hand-
designed features. Results also revealed that multi-category
classification is a very hard problem for standard GP that uses
a standalone expression-tree to handle all different classes.

Some future research questions are as follows. How can
we evolve towards cooperative sets of programs in order
to involve more than a single best-evolved program for
classification? In this context, how can we prevent complex
co-adaptations of the programs in a population (that may lead
to overfitting) so as to evolve independent feature detectors?
How can we adapt the filter bank during evolution, and
finally, how can we address the joint, simultaneous evolution
of all the transformation layers?

ACKNOWLEDGEMENT

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland
under Grant Number 08/SRC/FM1389.

REFERENCES

[1] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is
the best multi-stage architecture for object recognition?” in Proc.
International Conference on Computer Vision (ICCV’09). IEEE,
2009.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25.

[3] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, 2013.

[4] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
Jul. 2006.

[5] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” J. Mach. Learn. Res.,
vol. 10, pp. 1–40, Jun. 2009.

[6] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in Neural Information
Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, Eds.
Cambridge, MA: MIT Press, 2007, pp. 153–160.

[7] D. Yu, S. Wang, and L. Deng, “Sequential labeling using deep-
structured conditional random fields.” J. Sel. Topics Signal Process-
ing, vol. 4, no. 6, pp. 965–973, 2010.

[8] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in
context-dependent deep neural networks for conversational speech
transcription.” in ASRU, D. Nahamoo and M. Picheny, Eds. IEEE,
2011, pp. 24–29.

2458

30 40 50 60 70 80 90 100

0.8

0.85

0.9

0.95

generations

te
st

 e
rr

or
 r

at
e

mse fitness function

(a)

30 40 50 60 70 80 90 100

0.76

0.78

0.8

0.82

0.84

generations

te
st

 e
rr

or
 r

at
e

mse/ls fitness function

(b)

30 40 50 60 70 80 90 100
0.58

0.6

0.62

0.64

0.66

0.68

0.7

generations

te
st

 e
rr

or
 r

at
e

error rate fitness function

(c)

30 40 50 60 70 80 90 100

0.45

0.5

0.55

0.6

generations

te
st

 e
rr

or
 r

at
e

error rate fitness function / decision−tree representation

(d)

SST/30 SST/40 SST/50 SST/60 SST/70

0.07

0.08

0.09

0.1

te
st

 e
rr

or
 r

at
e

Stage/Generation (1 best program)

(e)

SST/30 SST/40 SST/50 DST/30 DST/40 DST/50

0.06

0.065

0.07

0.075

0.08

0.085

0.09

te
st

 e
rr

or
 r

at
e

Stage/Generation (1 best program)

(f)

SST/30 SST/40 SST/50 DST/30 DST/40 DST/50

0.04

0.05

0.06

0.07

0.08

te
st

 e
rr

or
 r

at
e

Stage/Generation (5 best programs)

(g)

SST/30 SST/40 SST/50 DST/30 DST/40 DST/50

0.04

0.05

0.06

0.07

te
st

 e
rr

or
 r

at
e

Stage/Generation (10 best programs)

(h)

0.02 0.04 0.06 0.08 0.1
0.03

0.04

0.05

0.06

0.07

0.08

0.09
te

st
 e

rr
or

 r
at

e
(D

S
T

/G
en

30
)

test error rate (SST/Gen50)

1 best program
5 best programs
10 best programs

(i)

Fig. 6. Box-plots depicting distributions of test classification error rates are generated based on 30 independent evolutionary runs. Figures (a), (b), (c)
show the evolution of error rates for STGPmse, STGPmse/ls, STGPer respectively. Figure (d) shows the evolution of error rate for GPDT. Figures (e),
(f) show the evolution of error rate for SST and DST, using a single best-evolved program in the classification layer. Figure (g), (h) shows the performance
of DST when accumulating features from 5 best-evolved programs and 10 best-evolved programs respectively. Figure (i) shows error rate in generation 50
of SST vs. error rate in generation 30 of DST (scatter plot of 30 independent runs). The line y=x is also illustrated to facilitate comparison of error rates.

[9] M. Zhang, X. Gao, and W. Lou, “A new crossover operator in
genetic programming for object classification,” IEEE Transactions on
Systems, Man and Cybernetics, Part B, vol. 37, no. 5, pp. 1332–1343,
Oct. 2007.

[10] O. Oechsle and A. F. Clark, “Feature extraction and classification
by genetic programming,” in 6th International Conference Computer
Vision Systems, ICVS 2008, ser. Lecture Notes in Computer Science,
A. Gasteratos, M. Vincze, and J. K. Tsotsos, Eds., vol. 5008.
Springer, 2008, pp. 131–140.

[11] M. Zhang and W. Smart, “Multiclass object classification using
genetic programming,” in Applications of Evolutionary Computing,
EvoWorkshops2004, ser. LNCS, vol. 3005. Springer Verlag, 2004.

[12] Y. Li, J. Ma, and Q. Zhao, “Two improvements in genetic program-
ming for image classification,” in 2008 IEEE WCCI, J. Wang, Ed.,
IEEE Computational Intelligence Society. Hong Kong: IEEE Press,
1-6 Jun. 2008, pp. 2492–2497.

[13] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Two-tier genetic

programming: towards raw pixel-based image classification,” Expert
Systems with Applications, vol. 39, no. 16, pp. 12 291–12 301, 2012.

[14] D. Atkins, K. Neshatian, and M. Zhang, “A domain independent
genetic programming approach to automatic feature extraction for
image classification,” in Proceedings of the 2011 IEEE CEC, A. E.
Smith, Ed., IEEE Computational Intelligence Society. New Orleans,
USA: IEEE Press, 5-8 Jun. 2011, pp. 238–245.

[15] T. Kowaliw, W. Banzhaf, N. Kharma, and S. Harding, “Evolving novel
image features using genetic programming-based image transforms,”
in 2009 IEEE Congress on Evolutionary Computation, A. Tyrrell,
Ed., IEEE Computational Intelligence Society. Trondheim, Norway:
IEEE Press, 18-21 May 2009, pp. 2502–2507.

[16] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng, “On
random weights and unsupervised feature learning,” in Proceedings of
the 28th International Conference on Machine Learning (ICML-11),
ser. ICML ’11, L. Getoor and T. Scheffer, Eds., 2011.

2459

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

		2015-09-21T11:12:23-0400
	Certified PDF 2 Signature

